tikara package#
Subpackages#
Submodules#
tikara.core module#
Contains the core Tika entrypoint. Re-exported from tikara so no need to import anything from here externally.
- class tikara.core.Tika(*, lazy_load: bool = True, custom_parsers: list[Parser] | Callable[[], list[Parser]] | None = None, custom_detectors: list[Detector] | Callable[[], list[Detector]] | None = None, custom_mime_types: list[str] | None = None, extra_jars: list[Path] | None = None, tika_jar_override: Path | None = None)[source]#
Bases:
object
The main entrypoint class. Wraps management of the underlying Tika and JVM instances.
- detect_language(content: str) TikaDetectLanguageResult [source]#
Detect the natural language of text content using Apache Tika’s language detection.
Uses statistical language detection models to identify the most likely language. Higher confidence and raw scores indicate more reliable detection. For best results, provide at least 50 characters of text.
- Parameters:
content – Text content to analyze. Should be plain text, not markup/code.
- Returns:
language: ISO 639-1 language code (e.g. “en” for English) confidence: Qualitative confidence level (HIGH/MEDIUM/LOW/NONE) raw_score: Numeric confidence score between 0 and 1
- Return type:
TikaDetectLanguageResult with fields
- Raises:
ValueError – If content is empty
RuntimeError – If language detection fails
Examples
High confidence detection:
tika = Tika() result = tika.detect_language("The quick brown fox jumps over the lazy dog") result.language 'en' result.confidence TikaLanguageConfidence.HIGH result.raw_score 0.999
Lower confidence example:
result = tika.detect_language("123") result.confidence TikaLanguageConfidence.LOW
Other languages:
tika.detect_language("El rápido zorro marrón salta sobre el perro perezoso").language 'es'
Notes
Models are loaded lazily on first use unless lazy_load=False in constructor
Supports ~70 languages including all major European and Asian languages
Short or ambiguous content may result in lower confidence scores
Language models are memory-intensive; loaded models persist until JVM shutdown
See also
examples/detect_language.ipynb: Additional language detection examples
- detect_mime_type(obj: str | Path | bytes | BinaryIO) str [source]#
Detect the MIME type of a file, bytes, or stream.
Uses Apache Tika’s MIME type detection capabilities which combine file extension examination, magic bytes analysis, and content inspection. For best results when using streams/bytes, provide content from the beginning of the file since magic byte detection examines file headers.
- Parameters:
obj – Input to detect MIME type for. Can be: - Path or str: Filesystem path - bytes: Raw content bytes - BinaryIO: File-like object in binary mode
- Returns:
Detected MIME type in format “type/subtype” (e.g. “application/pdf”)
- Return type:
str
- Raises:
TypeError – If input type is not supported
FileNotFoundError – If input file path does not exist
ValueError – If detection fails
Examples
Path input:
tika = Tika() tika.detect_mime_type("document.pdf")
Bytes input:
with open("document.pdf", "rb") as f: tika.detect_mime_type(f.read())
Stream input:
from io import BytesIO bio = BytesIO(b"<html><body>Hello</body></html>") tika.detect_mime_type(bio)
Notes
Supports all >1600 MIME types recognized by Apache Tika
Custom MIME types can be added via custom detectors
For reliable detection, provide at least 1KB of content when using bytes/streams
Detection order: custom detectors -> default Tika detectors
See also
examples/detect_mime_type.ipynb: More detection examples
examples/custom_detector.ipynb: Adding custom MIME type detection
- parse(obj: TikaInputType, *, output_format: TikaParseOutputFormat = 'xhtml', input_file_name: str | Path | None = None, content_type: str | None = None) tuple[str, TikaMetadata] [source]#
- parse(obj: TikaInputType, *, output_file: Path | str, output_format: TikaParseOutputFormat = 'xhtml', input_file_name: str | Path | None = None, content_type: str | None = None) tuple[Path, TikaMetadata]
- parse(obj: TikaInputType, *, output_stream: bool, output_format: TikaParseOutputFormat = 'xhtml', input_file_name: str | Path | None = None, content_type: str | None = None) tuple[BinaryIO, TikaMetadata]
Extract text content and metadata from documents.
Uses Apache Tika’s parsing capabilities to extract plain text or structured content from documents, along with metadata. Supports multiple input and output formats.
- Parameters:
obj – Input to parse. Can be: - Path or str: Filesystem path - bytes: Raw content bytes - BinaryIO: File-like object in binary mode
output_stream – Whether to return content as a stream instead of string
output_format – Format for extracted text: - “txt”: Plain text without markup - “xhtml”: Structured XML with text formatting (default)
output_file – Save content to this path instead of returning it
input_file_name – Original filename if obj is bytes/stream
content_type – MIME type of input if known
- Returns:
- Content (type depends on output mode):
String if no output_file/output_stream
Path if output_file specified
BinaryIO if output_stream=True
Dict of metadata about the document
- Return type:
Tuple containing
- Raises:
ValueError – If output_file needed but not provided
FileNotFoundError – If input file doesn’t exist
TypeError – If input type not supported
Examples
Basic text extraction:
tika = Tika() content, meta = tika.parse("report.pdf") print(f"Title: {meta.get('title')}") print(content[:100]) # First 100 chars
Stream output:
content, meta = tika.parse( "large.pdf", output_stream=True, output_format="txt" ... ) for line in content: process(line)
Save to file:
path, meta = tika.parse( "input.docx", output_file="extracted.txt", output_format="txt" ... )
Parse bytes with hints:
with open("doc.pdf", "rb") as f: content, meta = tika.parse( f.read(), input_file_name="doc.pdf", content_type="application/pdf" )
Notes
“xhtml” format preserves document structure
“txt” format gives clean plain text
Handles >1600 file formats
More accurate with filename/type hints
Streams good for large files
Metadata includes standard Dublin Core fields
See also
examples/parsing.ipynb: More parsing examples
- unpack(obj: str | Path | bytes | BinaryIO, output_dir: Path, *, max_depth: int = 1, input_file_name: str | Path | None = None, content_type: str | None = None) TikaUnpackResult [source]#
Extract embedded documents from a container document recursively.
Extracts and saves embedded documents (e.g. images in PDFs, files in Office documents) to disk. Can recursively extract from nested containers up to specified depth.
- Parameters:
obj – Input container document to extract from. Can be: - Path or str: Filesystem path - bytes: Raw content bytes - BinaryIO: File-like object in binary mode
output_dir – Directory to save extracted documents to. Created if doesn’t exist.
max_depth – Maximum recursion depth for nested containers. Default 1 extracts only top-level embedded docs.
input_file_name – Original filename if obj is bytes/stream. Helps with metadata extraction and also helps name the output of the root file in the output_dir. Only necessary if obj is bytes or stream.
content_type – MIME type of input if known. Helps with metadata extraction.
- Returns:
root_metadata: Metadata of the root document embedded_documents: List of TikaUnpackedItem objects representing extracted files
- Return type:
TikaUnpackResult with fields
- Raises:
FileNotFoundError – If input file path doesn’t exist
ValueError – If input type not supported
RuntimeError – If extraction fails
Examples
tika = Tika() items = tika.unpack("presentation.pptx", Path("extracted/")) for item in items: print(f"Found {item.metadata['Content-Type']} at {item.file_path}") Found image/png at extracted/image1.png Found application/pdf at extracted/embedded.pdf
Notes
Creates output_dir if it doesn’t exist
Handles nested containers (ZIP, PDF, Office docs etc)
Extracts images, attachments, embedded files
Returns paths are relative to output_dir
Metadata includes content type, relations, properties
Extraction depth measured from input document
For streams/bytes, provide filename/type if possible
See also
examples/unpack.ipynb: Additional extraction examples
RecursiveEmbeddedDocumentExtractor: Core extraction logic
tikara.data_types module#
Common data types used in public methods and classes.
- class tikara.data_types.TikaDetectLanguageResult(*, language: str, confidence: TikaLanguageConfidence, raw_score: float)[source]#
Bases:
BaseModel
Represents the result of a language detection operation.
- confidence: TikaLanguageConfidence[source]#
- class tikara.data_types.TikaLanguageConfidence(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
StrEnum
Enum representing the confidence level of a detected language result.
- class tikara.data_types.TikaMetadata(*, encoding: str | None = None, compression: str | None = None, paragraph_count: int | None = None, revision: str | None = None, word_count: int | None = None, line_count: int | None = None, character_count: int | None = None, character_count_with_spaces: int | None = None, page_count: int | None = None, chars_per_page: list[int] | int | None = None, table_count: int | str | None = None, component_count: int | None = None, image_count: int | None = None, hidden_slides: str | None = None, resource_name: str | None = None, resource_path: str | None = None, embedded_resource_type: str | None = None, embedded_relationship_id: str | None = None, embedded_depth: int | None = None, created: str | None = None, modified: str | None = None, content_type: str | None = None, content_type_override: str | None = None, content_length: int | None = None, title: str | None = None, description: str | None = None, type: str | None = None, keywords: str | list[str] | None = None, company: str | None = None, creator: str | None = None, publisher: str | None = None, contributor: str | None = None, language: str | None = None, identifier: str | None = None, application: str | None = None, application_version: str | None = None, producer: str | None = None, version: str | None = None, template: str | None = None, security: str | None = None, is_encrypted: bool | str | None = None, height: int | str | None = None, width: int | str | None = None, duration: float | str | None = None, sample_rate: int | str | None = None, stream_count: int | str | None = None, image_pixel_aspect_ratio: float | str | None = None, image_color_space: str | None = None, audio_channels: int | str | None = None, audio_bits: int | str | None = None, audio_sample_type: str | None = None, audio_encoding: str | None = None, video_frame_rate: float | str | None = None, video_codec: str | None = None, video_frame_count: int | str | None = None, from_: str | None = None, to: str | None = None, cc: str | None = None, bcc: str | None = None, multipart_subtypes: str | None = None, multipart_boundary: str | None = None, raw_metadata: dict[str, ~typing.Any] = <factory>)[source]#
Bases:
BaseModel
Normalized metadata from Tika document processing with standardized field names.
- class tikara.data_types.TikaUnpackResult(*, root_metadata: ~tikara.data_types.TikaMetadata, embedded_documents: list[~tikara.data_types.TikaUnpackedItem] = <factory>)[source]#
Bases:
BaseModel
Result of unpacking a document with embedded files.
- embedded_documents: list[TikaUnpackedItem][source]#
- model_config: ClassVar[ConfigDict] = {}[source]#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- root_metadata: TikaMetadata[source]#
- class tikara.data_types.TikaUnpackedItem(*, metadata: TikaMetadata, file_path: Path)[source]#
Bases:
BaseModel
Individual unpacked embedded document.
- metadata: TikaMetadata[source]#
tikara.error_handling module#
Collection of custom exceptions for Tikara and error handling utils.
- exception tikara.error_handling.TikaError[source]#
Bases:
Exception
Base class for all exceptions raised by Tikara.
- exception tikara.error_handling.TikaInitializationError[source]#
Bases:
TikaError
Raised when the Tika server fails to initialize.
- exception tikara.error_handling.TikaInputArgumentsError[source]#
Bases:
TikaError
Raised when the input parameters to a method is invalid.
- exception tikara.error_handling.TikaInputFileNotFoundError[source]#
Bases:
TikaInputArgumentsError
Raised when the input file or directory is not found.
- exception tikara.error_handling.TikaInputTypeError[source]#
Bases:
TikaInputArgumentsError
Raised when the input obj type is invalid.
- exception tikara.error_handling.TikaMimeTypeError[source]#
Bases:
TikaError
Raised when the mimetype is invalid.
- exception tikara.error_handling.TikaOutputFormatError[source]#
Bases:
TikaInputArgumentsError
Raised when the output format is invalid.
- exception tikara.error_handling.TikaOutputModeError[source]#
Bases:
TikaInputArgumentsError
Raised when the output mode is invalid.
- tikara.error_handling.wrap_exceptions(func: Callable[[P], R]) Callable[[P], R] [source]#
Wrap a function to convert Java Tika exceptions to Python TikaError.
- Parameters:
func – The function to wrap
- Returns:
Wrapped function that converts Java exceptions to Python exceptions
- Raises:
TikaError – When a TikaException occurs
Module contents#
Main package entrypoint for Tikara.
- class tikara.Tika(*, lazy_load: bool = True, custom_parsers: list[Parser] | Callable[[], list[Parser]] | None = None, custom_detectors: list[Detector] | Callable[[], list[Detector]] | None = None, custom_mime_types: list[str] | None = None, extra_jars: list[Path] | None = None, tika_jar_override: Path | None = None)[source]#
Bases:
object
The main entrypoint class. Wraps management of the underlying Tika and JVM instances.
- detect_language(content: str) TikaDetectLanguageResult [source]#
Detect the natural language of text content using Apache Tika’s language detection.
Uses statistical language detection models to identify the most likely language. Higher confidence and raw scores indicate more reliable detection. For best results, provide at least 50 characters of text.
- Parameters:
content – Text content to analyze. Should be plain text, not markup/code.
- Returns:
language: ISO 639-1 language code (e.g. “en” for English) confidence: Qualitative confidence level (HIGH/MEDIUM/LOW/NONE) raw_score: Numeric confidence score between 0 and 1
- Return type:
TikaDetectLanguageResult with fields
- Raises:
ValueError – If content is empty
RuntimeError – If language detection fails
Examples
High confidence detection:
tika = Tika() result = tika.detect_language("The quick brown fox jumps over the lazy dog") result.language 'en' result.confidence TikaLanguageConfidence.HIGH result.raw_score 0.999
Lower confidence example:
result = tika.detect_language("123") result.confidence TikaLanguageConfidence.LOW
Other languages:
tika.detect_language("El rápido zorro marrón salta sobre el perro perezoso").language 'es'
Notes
Models are loaded lazily on first use unless lazy_load=False in constructor
Supports ~70 languages including all major European and Asian languages
Short or ambiguous content may result in lower confidence scores
Language models are memory-intensive; loaded models persist until JVM shutdown
See also
examples/detect_language.ipynb: Additional language detection examples
- detect_mime_type(obj: str | Path | bytes | BinaryIO) str [source]#
Detect the MIME type of a file, bytes, or stream.
Uses Apache Tika’s MIME type detection capabilities which combine file extension examination, magic bytes analysis, and content inspection. For best results when using streams/bytes, provide content from the beginning of the file since magic byte detection examines file headers.
- Parameters:
obj – Input to detect MIME type for. Can be: - Path or str: Filesystem path - bytes: Raw content bytes - BinaryIO: File-like object in binary mode
- Returns:
Detected MIME type in format “type/subtype” (e.g. “application/pdf”)
- Return type:
str
- Raises:
TypeError – If input type is not supported
FileNotFoundError – If input file path does not exist
ValueError – If detection fails
Examples
Path input:
tika = Tika() tika.detect_mime_type("document.pdf")
Bytes input:
with open("document.pdf", "rb") as f: tika.detect_mime_type(f.read())
Stream input:
from io import BytesIO bio = BytesIO(b"<html><body>Hello</body></html>") tika.detect_mime_type(bio)
Notes
Supports all >1600 MIME types recognized by Apache Tika
Custom MIME types can be added via custom detectors
For reliable detection, provide at least 1KB of content when using bytes/streams
Detection order: custom detectors -> default Tika detectors
See also
examples/detect_mime_type.ipynb: More detection examples
examples/custom_detector.ipynb: Adding custom MIME type detection
- parse(obj: TikaInputType, *, output_format: TikaParseOutputFormat = 'xhtml', input_file_name: str | Path | None = None, content_type: str | None = None) tuple[str, TikaMetadata] [source]#
- parse(obj: TikaInputType, *, output_file: Path | str, output_format: TikaParseOutputFormat = 'xhtml', input_file_name: str | Path | None = None, content_type: str | None = None) tuple[Path, TikaMetadata]
- parse(obj: TikaInputType, *, output_stream: bool, output_format: TikaParseOutputFormat = 'xhtml', input_file_name: str | Path | None = None, content_type: str | None = None) tuple[BinaryIO, TikaMetadata]
Extract text content and metadata from documents.
Uses Apache Tika’s parsing capabilities to extract plain text or structured content from documents, along with metadata. Supports multiple input and output formats.
- Parameters:
obj – Input to parse. Can be: - Path or str: Filesystem path - bytes: Raw content bytes - BinaryIO: File-like object in binary mode
output_stream – Whether to return content as a stream instead of string
output_format – Format for extracted text: - “txt”: Plain text without markup - “xhtml”: Structured XML with text formatting (default)
output_file – Save content to this path instead of returning it
input_file_name – Original filename if obj is bytes/stream
content_type – MIME type of input if known
- Returns:
- Content (type depends on output mode):
String if no output_file/output_stream
Path if output_file specified
BinaryIO if output_stream=True
Dict of metadata about the document
- Return type:
Tuple containing
- Raises:
ValueError – If output_file needed but not provided
FileNotFoundError – If input file doesn’t exist
TypeError – If input type not supported
Examples
Basic text extraction:
tika = Tika() content, meta = tika.parse("report.pdf") print(f"Title: {meta.get('title')}") print(content[:100]) # First 100 chars
Stream output:
content, meta = tika.parse( "large.pdf", output_stream=True, output_format="txt" ... ) for line in content: process(line)
Save to file:
path, meta = tika.parse( "input.docx", output_file="extracted.txt", output_format="txt" ... )
Parse bytes with hints:
with open("doc.pdf", "rb") as f: content, meta = tika.parse( f.read(), input_file_name="doc.pdf", content_type="application/pdf" )
Notes
“xhtml” format preserves document structure
“txt” format gives clean plain text
Handles >1600 file formats
More accurate with filename/type hints
Streams good for large files
Metadata includes standard Dublin Core fields
See also
examples/parsing.ipynb: More parsing examples
- unpack(obj: str | Path | bytes | BinaryIO, output_dir: Path, *, max_depth: int = 1, input_file_name: str | Path | None = None, content_type: str | None = None) TikaUnpackResult [source]#
Extract embedded documents from a container document recursively.
Extracts and saves embedded documents (e.g. images in PDFs, files in Office documents) to disk. Can recursively extract from nested containers up to specified depth.
- Parameters:
obj – Input container document to extract from. Can be: - Path or str: Filesystem path - bytes: Raw content bytes - BinaryIO: File-like object in binary mode
output_dir – Directory to save extracted documents to. Created if doesn’t exist.
max_depth – Maximum recursion depth for nested containers. Default 1 extracts only top-level embedded docs.
input_file_name – Original filename if obj is bytes/stream. Helps with metadata extraction and also helps name the output of the root file in the output_dir. Only necessary if obj is bytes or stream.
content_type – MIME type of input if known. Helps with metadata extraction.
- Returns:
root_metadata: Metadata of the root document embedded_documents: List of TikaUnpackedItem objects representing extracted files
- Return type:
TikaUnpackResult with fields
- Raises:
FileNotFoundError – If input file path doesn’t exist
ValueError – If input type not supported
RuntimeError – If extraction fails
Examples
tika = Tika() items = tika.unpack("presentation.pptx", Path("extracted/")) for item in items: print(f"Found {item.metadata['Content-Type']} at {item.file_path}") Found image/png at extracted/image1.png Found application/pdf at extracted/embedded.pdf
Notes
Creates output_dir if it doesn’t exist
Handles nested containers (ZIP, PDF, Office docs etc)
Extracts images, attachments, embedded files
Returns paths are relative to output_dir
Metadata includes content type, relations, properties
Extraction depth measured from input document
For streams/bytes, provide filename/type if possible
See also
examples/unpack.ipynb: Additional extraction examples
RecursiveEmbeddedDocumentExtractor: Core extraction logic
- class tikara.TikaDetectLanguageResult(*, language: str, confidence: TikaLanguageConfidence, raw_score: float)[source]#
Bases:
BaseModel
Represents the result of a language detection operation.
- confidence: TikaLanguageConfidence#
- language: str#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- raw_score: float#
- exception tikara.TikaError[source]#
Bases:
Exception
Base class for all exceptions raised by Tikara.
- class tikara.TikaLanguageConfidence(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)[source]#
Bases:
StrEnum
Enum representing the confidence level of a detected language result.
- HIGH = 'HIGH'#
- LOW = 'LOW'#
- MEDIUM = 'MEDIUM'#
- NONE = 'NONE'#
- class tikara.TikaMetadata(*, encoding: str | None = None, compression: str | None = None, paragraph_count: int | None = None, revision: str | None = None, word_count: int | None = None, line_count: int | None = None, character_count: int | None = None, character_count_with_spaces: int | None = None, page_count: int | None = None, chars_per_page: list[int] | int | None = None, table_count: int | str | None = None, component_count: int | None = None, image_count: int | None = None, hidden_slides: str | None = None, resource_name: str | None = None, resource_path: str | None = None, embedded_resource_type: str | None = None, embedded_relationship_id: str | None = None, embedded_depth: int | None = None, created: str | None = None, modified: str | None = None, content_type: str | None = None, content_type_override: str | None = None, content_length: int | None = None, title: str | None = None, description: str | None = None, type: str | None = None, keywords: str | list[str] | None = None, company: str | None = None, creator: str | None = None, publisher: str | None = None, contributor: str | None = None, language: str | None = None, identifier: str | None = None, application: str | None = None, application_version: str | None = None, producer: str | None = None, version: str | None = None, template: str | None = None, security: str | None = None, is_encrypted: bool | str | None = None, height: int | str | None = None, width: int | str | None = None, duration: float | str | None = None, sample_rate: int | str | None = None, stream_count: int | str | None = None, image_pixel_aspect_ratio: float | str | None = None, image_color_space: str | None = None, audio_channels: int | str | None = None, audio_bits: int | str | None = None, audio_sample_type: str | None = None, audio_encoding: str | None = None, video_frame_rate: float | str | None = None, video_codec: str | None = None, video_frame_count: int | str | None = None, from_: str | None = None, to: str | None = None, cc: str | None = None, bcc: str | None = None, multipart_subtypes: str | None = None, multipart_boundary: str | None = None, raw_metadata: dict[str, ~typing.Any] = <factory>)[source]#
Bases:
BaseModel
Normalized metadata from Tika document processing with standardized field names.
- application: str | None#
- application_version: str | None#
- audio_bits: int | str | None#
- audio_channels: int | str | None#
- audio_encoding: str | None#
- audio_sample_type: str | None#
- bcc: str | None#
- cc: str | None#
- character_count: int | None#
- character_count_with_spaces: int | None#
- chars_per_page: list[int] | int | None#
- company: str | None#
- component_count: int | None#
- compression: str | None#
- content_length: int | None#
- content_type: str | None#
- content_type_override: str | None#
- contributor: str | None#
- created: str | None#
- creator: str | None#
- description: str | None#
- duration: float | str | None#
- embedded_depth: int | None#
- embedded_relationship_id: str | None#
- embedded_resource_type: str | None#
- encoding: str | None#
- from_: str | None#
- height: int | str | None#
- identifier: str | None#
- image_color_space: str | None#
- image_count: int | None#
- image_pixel_aspect_ratio: float | str | None#
- is_encrypted: bool | str | None#
- keywords: str | list[str] | None#
- language: str | None#
- line_count: int | None#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- modified: str | None#
- multipart_boundary: str | None#
- multipart_subtypes: str | None#
- page_count: int | None#
- paragraph_count: int | None#
- producer: str | None#
- publisher: str | None#
- raw_metadata: dict[str, Any]#
- resource_name: str | None#
- resource_path: str | None#
- revision: str | None#
- sample_rate: int | str | None#
- security: str | None#
- stream_count: int | str | None#
- table_count: int | str | None#
- template: str | None#
- title: str | None#
- to: str | None#
- type: str | None#
- version: str | None#
- video_codec: str | None#
- video_frame_count: int | str | None#
- video_frame_rate: float | str | None#
- width: int | str | None#
- word_count: int | None#
- class tikara.TikaUnpackResult(*, root_metadata: ~tikara.data_types.TikaMetadata, embedded_documents: list[~tikara.data_types.TikaUnpackedItem] = <factory>)[source]#
Bases:
BaseModel
Result of unpacking a document with embedded files.
- embedded_documents: list[TikaUnpackedItem]#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- root_metadata: TikaMetadata#
- class tikara.TikaUnpackedItem(*, metadata: TikaMetadata, file_path: Path)[source]#
Bases:
BaseModel
Individual unpacked embedded document.
- file_path: Path#
- metadata: TikaMetadata#
- model_config: ClassVar[ConfigDict] = {}#
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].